

Effective ways of teaching experimental design skills

Luca Szalay¹, Réka Borbás², Zoltán Tóth³

¹ELTE, Eötvös Loránd University, Budapest, Hungary
 ²Szent István Secondary School, Ajtósi Dürer sor 15, 1146 Budapest, Hungary
 ³University of Debrecen, Debrecen, Hungary

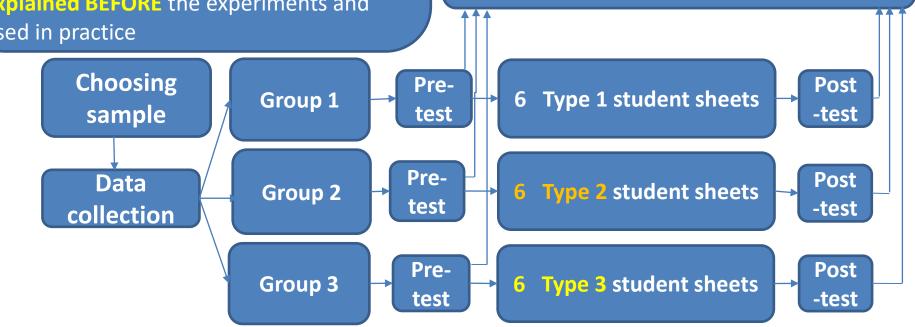
Content Pedagogy Research Program of the Hungarian Academy of Sciences (2016-2020) MTA-ELTE Research Group on Inquiry-Based Chemistry Education <u>http://ttomc.elte.hu/publications/90</u> Luca Szalay: <u>luca.szalay@ttk.elte.hu</u>

Two research projects about changing

step-by-step student experiments to student experiments

partially designed by the students

	Brief research*: in school year 2014/2015	Longitudinal research**: in 4 school years 2016-2020 (2021!)
Intervention	3 lessons	6 lessons/school year (=24 lessons)
Tests	Pre-test+post-test	Test 0 (T0): September 2016 + T1, T2, T3, T4 : end of school year
Number of students	660	920
Age of students (years)	14/15 Grade 9	12/13:2016; 15/16:2020 Grade 7-10
Number of teachers	15 (in service)	<mark>41 (in-service) + 5 (pre-service</mark>)
Number of schools	12	18
Group 1 (control)	only step-by-step exp.	only step-by-step experiments
Group 2 (experimental)	designs experiments	theoretical experiment design
Group 3 (experimental)	-	experiment design in practice


*Szalay, L., Tóth, Z., (2016), An inquiry-based approach of traditional 'step-by-step' experiments, *Chem. Educ. Res. Pract.*, **17**, 923-961.

Szalay, L., Tóth, Z., Kiss, E., (2020), Introducing students to experimental design skills, *Chem. Educ. Res. Pract.*, **21, 331 – 356.

The research model from September 2017 (from Grade 8)

6 student sheets for 6 lessons (45 min) in <u>3 versions:</u> Type 1: only step-by-step experiments Type 2: step-by-step experiments + principles of experimental design explained AFTER the experiments Type 3: principles of experimental design explained BEFORE the experiments and used in practice First year: no significant difference in the development of experimental design skills between the experimental groups and the control group \rightarrow **lack of scaffolding did not work** \rightarrow

Statistical analysis of data

The important aspects of the experimental design (e.g. 'other variables held constant') were taught from September 2017.

Statistical analysis of data

- Structured paper and pencil tests (T0-T4); tasks intending to measure: same items: disciplinary content knowledge (DCK) + experimental design skills (EDS)
- 2017-2020: avarage scores of Group 2 and 3 students on T0 were significantly better →reduced sample: 3 groups are not sign. diff. in parameters + covariants
- COVID-19 →trials of student sheets + T4 test finished in June 2021
- 461 students took all the 5 tests → N=461: no sign. diff. among groups on TO:
 Group 1: 130; Group 2: 162; Group 3: 169 students
- Analysis of covariance (ANCOVA) of the SPSS Statistics software
- Independent variables (parameters "sources"):
 - Groups (3 types of instruction methods: Group 1, Group 2, Group 3)
 - School ranking (3 categories: high, medium and low ranking schools)
 - Mother's education (2 categories: mother has/has not got a degree in HE)
 - Gender of the student (2 categories: boys, girls)
- **Covariant:** Result of Test 0 (continuous variable)
- Dependent variables: percents of students' scores (%) in the tests (on the total test, on DCK and EDS tasks, respectively) analysed as continuous variables.
- Bonferroni correction \rightarrow results are significant at p=0.05/5=0.01 level
- *Partial eta-squared (PES)* was used as a measure of the effect size.

The effect (*PES*) of the assumed parameters on the students' scores and the estimated mean scores (%)

on the whole tests (DCK+EDS tasks) (N = 461)

Parameter↓	$PES \rightarrow$	Test 0	Test 1	Test 2	Test 3	Test 4
Group (effect of intervention)		0.017	0.077*	0.047*	<mark>0.019</mark>	0.004
School ranking**		0.049*	0.026*	0.098*	0.157*	0.050*
Mother's education***		0.077*	0.000	0.000	0.005	0.019*
Gender		0.000	0.001	0.018*	0.007	0.015*
то		-	0.005	0.113*	0.095*	0.062*
Estimated mean scores (%) \checkmark	$PES \rightarrow$	Test 0	Test 1	Test 2	Test 3	Test 4
Group 1		36.0	38.1	30.8	32.3	43.3
Group 2		40.2	45.6	41.9	38.2	40.4
Group 3		40.1	32.5	39.8	37.8	40.2
Significant difference among Gr	oups	1–2; 1–3	1-2; 1-	1-2; 1-3	1-2; 1-3	-
N-0.0T			3; 2-3			

* *: students from lower ranking schools scored significantly less than others * * *: mother's education (social background) mattered only in T0 and T4

The effect (*PES*) of the assumed parameters on the students' scores and the estimated mean scores (%)

on the experimental design skills (EDS) tasks (N = 461)

					1	
Parameter 🗸	$PES \rightarrow$	Test 0	Test 1	Test 2	Test 3	Test 4
Group (effect of intervention)		0.043*	0.061*	0.045*	0.011	<mark>0.008</mark>
School ranking* *		0.036*	0.023	0.072*	0.215*	0.103*
Mother's education		0.055*	0.001	0.003	0.000	0.001
Gender		0,000	0,000	0,010	0,032*	0,008
TO (EDS)		-	0,000	0,083*	0,052*	0,068*
Estimated mean scores (%)↓	PES→	Test 0	Test 1	Test 2	Test 3	Test 4
Estimated mean scores (%)↓ Group 1	PES→	Test 0 19.5	Test 1 34.6	Test 2 21.3	Test 3 27.9	Test 4 41.5
	PES→					
Group 1	PES→	19.5	34.6	21.3	27.9	41.5
Group 1 Group 2		19.5 27.2 20.1	34.6 41.3	21.3 34.1	27.9 33.8	41.5 36.1

*p<0.01

* *: students from lower ranking schools scored significantly less than others

* * *: mother's education (social background) mattered only in TO

The effect (*PES*) of the intervention and the school ranking on the students' scores on the whole tests (*N* = 461)

Intervention J	$PES \rightarrow$	Test 0	Test 1	Test 2	Test 3	Test 4
Group 2 – Group 1 (coi	ntrol)	0.014	0.022*	0.043*	0.016*	<mark>0.003</mark>
Group 3 – Group 1 (co	ntrol)	0.014	0.013	0.031*	0.015*	<mark>0.004</mark>
School ranking $oldsymbol{\downarrow}$	$PES \rightarrow$	Test 0	Test 1	Test 2	Test 3	Test 4
High – low		0.039*	0.013	0.093*	0.129*	0.047*
High – medium		0.001	0.022	0.012	0.002	0.005

The effect (*PES*) of the intervention and the school ranking

on the students' scores on the EDS tasks (N = 461)

Intervention \checkmark	$PES \rightarrow$	Test 0	Test 1	Test 2	Test 3	Test 4
Group 2 – Group 1 (c	ontrol)	0.031*	0.012	0.038*	0.010	<mark>0.007</mark>
Group 3 – Group 1 (control)		0,000	0,014	0.034*	0.007	<mark>0.006</mark>
School ranking↓	$PES \rightarrow$	Test 0	Test 1	Test 2	Test 3	Test 4
School ranking↓ High – low	PES →	Test 0 0.015	Test 1 0.010	Test 2 0.040*	Test 3 0.162*	Test 4 0.103*
	PES →					

*p<0.01

Discussion and conclusions

- Social variables (represented by mother's education) had a significant effect on the students' achievement on the EDS scores of Test 0, than disappeared – students carefully selected by the schools!
- School variables (represented by school ranking) had a stronger effect on the EDS scores than the intervention from T2 (Grade 8).
- Direct teaching of experimental design seems to work better
 - T1 (Grade 7): no significant development in the EDS (younger students and longer period than in the previous brief project!)
 - T2 (Grade 8): significant development in the EDS in both experimental groups – direct teaching of the experimental design is more effective!
 - T3 and T4 (Grade 9 and Grade 10): : no significant development in the EDS – EXPLANATIONS? – What can we say to the teachers?
 - 1. Students in Piaget's formal operational stage can work out how to design experiments?
 - 2. Ability scores are confounded by motivational levels? –(Effect of TO!)
 - 3. Do the tests provide a good enough picture about EDS? (+COVID-19!)
 - 4. Is it better to teach how to use a template to design experiments?

This study was funded by the Content Pedagogy Research Program of the Hungarian Academy of Sciences.

Website: <u>http://ttomc.elte.hu/</u> <u>publications/90</u> E-mail: <u>luca.szalay@ttk.elte.hu</u>

THANK YOU FOR YOUR ATTENTION!

